

GeoDayz - 2018

2018 GEODAYZ Feb. 24 & 25, 2018 1120 NW Stallings Dr. Nacogdoches, TX

AIPG - TX presents

Learn About the Application of Geological and Hydrogeological Techniques ...

For Students and New Professionals in the Industry

Featuring Demonstrations & Presentations

Management of Environmental Projects, Procedures, and Case Histories

by

Henry M. Wise, P.G., C.P.G., President, AIPG Texas Section

and

Michael D. Campbell, P.G., P.H., C.P.G.

Vice President - Eastern Texas, AIPG Texas Section

Version 2.8 February 22, 2018

Projects Driven by Federal and State Laws and Regulations Leading to the Creation of the U.S. Environmental Protection Agency (U.S. EPA), followed by counterpart State agencies since 1970s.

Deep History:

- 1965 U.S. Congress passed the Solid Waste Disposal Act.
- 1970 –U.S. Congress amended the SWDA the Resource Recovery Act, and leading to creation of EPA (with <u>10 Regional EPA Offices</u>)
- 1976 U.S. Congress amended the SWDA with the Resource Conservation and Recovery Act (known as RCRA).
- 1984 U.S. Congress amended RCRA with the Hazardous and Solid Waste Amendments (HSWA).

Environmental Projects

- Are not only driven by Federal and State laws and regulations, They are also driven by litigation, or the threat of litigation (<u>more</u>):
 - Alleged exposure of contaminants of humans living around industrial facilities,
 - ✓ Alleged exposure of employees of industry against company,
 - Dominant alleged exposure from groundwater (via water wells), but also exposure by air, surface water, food, and other exposures.
 - ✓ The principal media of concern for exposure is via groundwater, beginning with the creation of EPA in the 1970s to the present, although in the 1990s, air exposures also became important to EPA which stimulated air quality monitoring and associated regulations, and
 - ✓ The role of Professional Hydrogeologists and Geologists was and remains the key professional involved in environmental projects, although surface concerns (for wetlands, GIS, etc.,) have emerged for Geoscientists (with a broad range of training), along with Regulatory Specialists.

Stated Goals of RCRA

- To protect human health and the environment from the potential hazards of waste management,
- To conserve energy and natural resources,
- To reduce the amount of waste generated, including hazardous waste, and
- To ensure that wastes are managed in an environmentally sound manner.

Stated Action Items

• After 1984 (HSWA): Operating Industry Permitted Treatment, Storage, Disposal (TSD) Facilities seeking a permit are required to institute corrective action as necessary to protect HH&E from releases from SWMUs, regardless of when the waste was placed in the unit. Hence a series regulations regarding investigations and associated Health & Safety still matters today.

Stated Goals of CERCLA (Superfund Projects)

- The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) defines the organizational structure and procedures for preparing for and responding to discharges of oil and releases of hazardous substances, pollutants, and contaminants in the United States.
- The NCP was developed by the EPA in response to the congressional enactment of The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of December 11, 1980,
- As amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986, and by section 311(d) of the Clean Water Act (CWA) (<u>more</u>).
- Today, "most" sites have been identified, but clean-up (remediation) continues:
 - Federal Superfund Sites in Texas (more)
 - State Superfund Site in Texas (more)
 - State-Driven Clean-up Projects in Texas (more), including:
 - Gasoline/Diesel Stations (more)
 - Dry Cleaners (more)
 - Texas Landfill Projects (more)
 - Others (more)

Management Functions/Responsibilities:

- Monitoring of State & Federal Regulations Because changes can occur rapidly that have an impact on activities, and on project protocols (e.g., sampling of volatile organic compounds (VOCs).
- Monitoring of company personnel by professionals with specialized training (CIHs) either in-house or by contract for regular inspections.
- Monitoring and adaptation of new technology (GIS, drones, etc.)
- Charged with responsibility for protecting company liability:
 - 1. Technical protocol training & implementation, e.g. IET & Activities
 - 2. Health & Safety, including possible drug testing, and
 - 3. Management expectations (behaviors in meetings and in public).
 - 4. Comparison of Business & Environmental Project Management (more)

Health & Safety

(from FR 1910.120)

- 40-hour OSHA training
- 8-hour annual OSHA refresher
- Additional training:

≻Industry/Society Training:

First Aid (CPR, etc.) Confined Space TCEQ CAPM –See <u>Application</u>)

4	LAW ENGINE	ERING INC.
a de la como	Michael D. Can	npbell
40 HO REQU Nov.	HAS COMPLETED A MINI URS OF HEALTH AND SAF IRED FOR WORK ON HAZ 27, 1990	MUM OF TETY TRAINING ARDOUS SITES
EXPIRATION	DATE	CHIEF ENGINEER

In-House Client-Required H&S Training

Awareness of Field Health & Safety Issues (more)

Health & Safety Hudrez

- Call 811 for subsurface "line locates" (gas, electrical, etc.). 48 hours to 2 weeks notice, good for 2 weeks.
- Call city for establishing locations of city sewers and water lines.
- Determine if any city, county, or state permits or notifications are required.

Health & Safety

• Each site must have its own H&S plan.

- Scope of work
- Responsible persons
- Potential hazards
- Location of nearest hospital
- Personal Protection Equipment
- Evacuation routes and meeting locations
- Daily tailgate safety meetings

Laboratory Selection

For investigations involving permitting and remediation, use National Environmental Laboratory Accreditation Program (NELAP) approved labs only

For RCRA or CERLA investigations, must use labs approved by state or federal agencies, socalled EPA-approved labs.

Accuracy vs. Precision Hudrez

- "Accuracy" how close a measured value is to the actual (true) value.
 - Measured as %R (% Recovery of a known concentration added to the sample)
- "Precision" how close the measured values are to each other.
 - Measured as % RPD (Relative Percent Difference between two analyses of the same sample).

Accuracy vs. Precision Laboratory Data

High Accuracy Low Precision

Low Accuracy High Precision

High Accuracy High Precision

BS / BSD Recoveries

Project Name:

Work Order #:							Proj	ject ID:			
Analyst: JTR.	D	ate Prepar	ed: 01/16/201	8			Date A	nalyzed: (01/16/2018		_
Lab Batch ID: Sample:		Batc	h#: 1					Matrix: S	Solid		
Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY S								ERY STUI	θ¥		
BTEX-MTBE by SW 8260B Analytes	Blank Sample Result [A]	Spike Added [B]	Biank Spilce Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Bik. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
MTBE	<0.00250	0.500	0.520	104	0.500	0.553	111	6	68-138	25	
Benzene	<0.000500	0.100	0.108	108	0.100	0.115	115	6	62-132	25	
Tohene	<0.000500	0.100	0.100	100	0.100	0.108	108	8	66-124	25	
Ethylbenzene	⊲0.000500	0.100	0.103	103	0.100	0.110	110	7	71-134	25	
m.p-Xylenes	<0.00100	0.200	0.205	103	0.200	0.216	108	5	69-128	25	
o-Xylene	<0.000500	0.100	0.106	106	0.100	0.114	114	7	72-131	25	

Detection Limits

- Method Quantitation Limit (MQL)
 99% confidence
- Sample Detection Limit (SDL)
 - MQL adjusted to reflect sample (dilution, sample size, etc.)

	Certific	ate of Ana	nlytical R	Results		_	Ċ	NI				
Sample Id:		Matrix:	Soil		Sample	e Depth:						
Lab Sample Id:		Date Collecte	ed: 01.08.18 14	4.45	Date R	eceived: 01.09.	18 15.2	10				
Analytical Method: TPH by Texas1005					Prep M	fethod: 1005						
Analyst: TETT		% Moist 23	5.12		Tech:	ISU						
Seq Number:		Date Prep: 01	.11.18 17.38									
		Prep seq: 70	37353									
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor				
C6-C12 Range Hydrocarbons	PHC612 PHCC1228	37.4	56.0	2.65	mg/kg	01.14.18 23:26	1	1				
C28-C35 Range Hydrocarbons	PHCG2835	<0.759	56.0	0.759	mgag mgag	01.14.18 23:26	Ū	1				
Total TPH	PHC635	48.1		0.759	mg/kg	01.14.18 23:26	1					
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag				
o-Terphenyl		85		70 - 1	30 9	4		-				
1-Chlorooctane		80		70 - 1	30 9	6						
Analytical Method: BTEX-MTBE by SW Analyst: JTR Seq Number:	\$260B	% Moist: 23 Date Prep: 01 Prep seq: 76	3.12 1.16.18 12.40 537586		Prep M Tech:	fethod: 5035 JTR						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor				
MTBE	1634-04-4	<0.0791	0.158	0.0791	mg/kg	01.16.18 15:35	U	24				
Toluene	108-88-3	0.135	0.0316	0.0158	mg ng mg kg	01.16.18 15:35		24				
Ethylbenzene	100-41-4	0.0699	0.0316	0.0158	mg/kg	01.16.18 15:35		24				
m.p-Xylenes	179601-23-1	0.262	0.0633	0.0316	mg/kg	01.16.18 15:35		24				
o-Aylene Total Yrlanar	95-47-6	0.110	0.0316	0.0158	mg/kg	01.16.18 15:35		24				
Total BTEX	1350-201	0.596		0.0158	mg/kg	01.16.18 15:35						
Surrogate		% Recovery		Limits	Un	its Analysis	Date	Flag				
Dibromofluoromethane		88		74 - 1	26 9	6		-				
1,2-Dichloroethane-D4		92		80 - 1	20 9	6						
Toluene-D8		106		73 - 1	32 9							

Page 11 of 40

Final 1.000

Quality Assurance

- Trip Blank
 - 1 per cooler
- Temperature Blank
 - 1 per cooler
- Field Blank
 - 1 per 10 samples
- Equipment Blank
 - 1 per day per equipment type

Quality Assurance

- Field Duplicates
 - 1 per 10 samples
 - Soil samples RPD <50%, unless other DL stipulated.
 - Water samples RPD <30%, unless other DL stipulated.

• Assessment of Data Quality

- Often conducted by geochemist in-house or independent consulting chemist.
- Data must be Defensible!

Sample Holding Times Hudrez

- 48 hours to get samples to lab.
- Different analyses have different holding times.
 - Some:
 - 24 hours to 6 months
 - VOCs
 - Water 14 days
 - Soil 48 hours (method 5035)

Chain of Custody of Sample Transport to Labs

roject Name-Location	Previous		,	Phon	10					1.8	4.0	13466																	
roject Name-Location	Previous		Phone							Lab Only:																			
oj. State: TX, AL, FL, G		y done at X	ENCO			Pro	jecí II)		TA II is	T: s typ	ASA	NP 51 N 5-1	h 12 7 We	2h 2 orkin	dh g De	48h ys fe	3d sr lev	5d al II a	7d 10	Dd 2 Wor	te Si king (tandar days fi	d TAT or level	is pro III sn	ect sp e IV d	ecific sta.	2	
1, F7, 30, N, 01 0, III	A, LA, MS, NC,	Proj. Man	Proj. Manager (PM)							R CAL							(1982)		Τ	Τ			T		10.0		6	Re	marks
mail Results to []PM and	Fax No:								0	Othe			dx-2	18	1 A00	e,								14.	HIH	evora		T
voice to 🔲 Accounting File:	☐ inc. Invoice w	I inc. Invoice with Final Report 📋 invoice must have a P.O.								VOH	CALL		r	vóde .	esticide	Appdx	M. He								Ř	1 lich	pro up	g	
uote/Pricing:		P.O. No: Call for P.O.								DXVG	x-2		4P	d.	d	TM	E.								1.2	i g	d and	nead	
Reg Program: LST DRY-CLEAN _and-Fit Waste-Disp NPDES DW TRRP								-	Ŧ	public		MA	TOL	0	EZ d	/00								3	100	v sn	0.83		
QAPP Per-Contract CLP ACCEE NAVY DOE DOD USACE CTHER									8	1 1		H	2	odes	0 13FI	8								107	N N	I sop	ANDIO		
Special DLs (GW DW CAPP MDLs RLs See Lab PM Included Call PM)									TIBE	opde	270	MA	HNA/	-icrbi	Pl	00								5	ar l	is wi	時日		
1									X-W	>	-00	0	-	5	RAA	-1								ŝ	4 1	aBuer	2 bi		
ampler Name		Signatu	an I	_			_			818	2	8310	10	2 2	PCH	RC	Meta								101	8	Surd-	10 91	
Sample ID	Sampling Date	Time	Depth ft' In" m	Mat/1X Composite	Grab	# Containers	Container Size	Container Typ	Preservatives	VOA: Full-List	VOA: PP TO	PAHS SIM	TX-1005 DRG	SVOCE Ful-U	OC Peeliddee	WEAS. RCRAS	SPLP - TOLP	EDB / (18CP							TATACAD AN	Acidn: PAH abo	Hold Samples (Sample Clean-	
			\square	1					-																-				
			+	+	-	+	-	-	-	-	_	_	-	-	-	_	_		+	+	-		+		+	+	-		_
				1																									
			+-+	+	$\left \right $	-		-	-	_	_	-		_			_		+	+	-		-		_	+	-	-	
				1				-								-	-						+		+				
				+																									
Relinquished by (Initials and Sign) Date & Time Relinquished to (Initials and						ils ar	d St	gn)	-	-	Det	0 8,	Time		Total	Cunia	iners	par G	00:	Bern		Coore	r Ten	p:	×	-			
				61)		-				-	-	-	_	-	-	-	unli	paid, 8	ierno e	is will	on g.	Hd 30 c	ays sib	er final	usbourge	iser	mailed u	riess
	-			8								-		_	_	_	_	hand	7 200	csled	Rusł	Chan	çes an	d Coles	tion Fr	es are	pre-e	aoomees	freece

Phase I Environmental Site Assessments

Phase II Environmental Site Assessments

Texas Risk-Based Corrective Action (here)

Texas Risk Reduction Program (here)

Phase III Remediation Assessments
Phase IV Remediation Design & Implementation

Texas Closure Waste Management Units Program (here)

Phase V Long-Term Monitoring or Site Closure

- In the event the Phase I ESA finds evidence for possible/likely surface and/or subsurface contamination of soil, underlying sediments, and groundwater, a Phase II ESA investigation is generally undertaken, via soil sampling, drilling to obtain groundwater samples, associated well logging of core, geophysical logging (natural gamma, caliper, resistivity, etc. (to distinguish the characteristics of subsurface claysilt-sand unit boundaries). Use of produced Phase II Data:
 - Determine contaminant type and horizontal and vertical extent of contaminants of concern in the subsurface,
 - ✓ Determine direction of groundwater flow,
 - ✓ Rate of groundwater flow,
 - All accomplished by groundwater modeling, modified by characteristics of contaminant flow or migration in groundwater.

Project Management Hudrez

- Texas Risk-Based Corrective Action (RBCA) (here)
 - For releases from Petroleum Storage Tanks (PSTs) containing petroleum substances
 - PSTs are used for refueling vehicles and equipment
 - Typically are gasoline stations, farm and ranch PSTs used for refueling trucks, etc.
- Texas Risk Reduction Program (TRRP) (here)
 - For petroleum and hazardous material releases from RCRA, CERCLA, waste management units, landfills, etc. sites
 - For petroleum and hazardous material releases spills from vehicles and bulk facilities

Texas Closure Waste Management Units Program (CWMP) (here)

- Closure re categories of RCRA waste-management units subject to TRRP at time of closure,
- Unless the RCRA unit has a PST that falls under the PST rules (RBCA).

Data for Input to Phase I Site Assessments

Growth Fault at Surface near San Jacinto Monument, near Houston

Natural Gas in Groundwater of Houston, Texas Area MUD water wells.

Data for Input to Phase I Site Assessments

Red Flame Symbol = > 5 μ g/L Uranium as Anomalous (MCL 5 ppb?) Houston Area Water Wells, MUD and Private Wells

Data Input for Phase I Site Assessments

Reported Uranium, Radium, etc. in Groundwater, Houston, Texas Area (in mid-1960s).

Project Management Data Input for Phase I Site

LiDAR Imaging: "Light Detection and Ranging), is a remote sensing method that uses light in the form of a pulsed laser to measure ranges (variable distances) to the surface of the Earth.

Vertical accuracy is increasing with time:

17 cms (over pavement, grassy areas and evergreen forests) to 26 cms (deciduous forests) (<u>more</u>).

Project Management Hudrex

Input to Phase I Site Assessments

Ground-Penetrating Radar Testing

Input to Phase I Site Assessments

Long Point Fault, Western Houston, Tex.

Above based on Campbell, et al., 2018 (more)

5.00

Types of Contaminants to be Managed

Types of Contaminants to be Managed

LNAPLs

Typically BTEX + MTBE + Other Hydrocarbons and Additives

Gasoline • Kerosene • Fuel oil • Jet fuel • Diesel fuel

Types of Contaminants to be Managed

DNAPL and LNAPL Aqueous Solubility

Some of the Chlorinated Solvents:

Tetrachloroethene, aka Perchloroethylene (PERC), Trichloroethylene & Tetrachloroethene (TCE), 1,1,1-trichloroethane (<u>Chlorothene</u>), Carbon tetrachloride, Coal Tars, (<u>Polycyclic Aromatic Hydrocarbons</u>), Various types of Creosote (<u>more</u>), and Polychlorinated biphenyl (<u>PCBs</u>),

One example of many approaches to remediation of DNAPIs: <u>Aerobic TCE biodegradation</u>

(After ITRC (2015))

Types of Contaminants to be Managed

DNAPLs

Phase II Investigations for Geological and Hydrogeological Characterization: Vertical and Horizontal Extent

Any Effective Remediation of Contaminants Depends on it !

Unusual Phase II Projects

Unusual Phase II Projects

Photomicrograph of thin section (showing crossed nicols polarization)

Licensed Geologist logging core under winter conditions.

Model of likely cause of elevated chloride concentrations reported in neighborhood water wells.

Above based on Campbell, et al., 2017 (more)

Data for Input to Phase II Investigations

Drilling by coring of sediments (GeoProbe (push-pull method)) and setting of PVC casing and well screen to construct a monitoring well for sampling and remote monitoring

Hydrogeologists Logging Station

Data for Input to Phase II Investigations

Plant Site Aerial View w/MW Locations: August 19, 2011 and July 5, 2012

To Active PDF (<u>here</u>)

To Remote Continuous Groundwater Monitoring (here)

To Arsenic Monitoring (2011-2015) (here)

Final Note: For students who have produced a thesis or dissertation, we encourage you to publish your findings. Summaries (**TPG**) & (**more**).

To keep up-to-date on specific areas of the geosciences, monitor the I2M Web Portal (more).

After graduation, you should begin the process of obtaining your professional license (P.G.). See TBPG (here). Preparing for the first examination (Fundamentals), see (here) and (here).

If you would like to keep up on employment issues, see (here) and (here).

If time permits, Questions?

Should you have further questions after GeoDayz, feel free to contact either Henry Wise or Michael Campbell via the AIPG-TX.org

We trust you will find the rest of the GeoDayz program of interest and helpful.